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The vagaries of autonomous driving 

Due to the complexity of the underlying activity and the variation in its context, there are 
various sources of changes which manifest for an autonomous driving operation. We 
understand these to include: 

1. Weather conditions 
2. Lighting 
3. Dynamic objects and agents 
4. Internal settings and parameters 

These have safety and efficiency implications, where autonomy-enabling tasks which rely on 
sensor observations and system calibration can have their performances perturbed or 
totally degraded.  

In the face of such variability we propose several related approaches to change, detailed 
below. 

Change-immune sensing 

While extremely fast and high-resolution, LiDAR is sensitive to weather conditions (see Fig. 
2), especially rain and fog, and cannot see past the first surface encountered. Vision systems 
are versatile and cheap and naturally understandable by human operators, but easily 
impaired by scene changes (see Fig. 1), like poor lighting or the sudden presence of snow. 

Radar overcomes the challenges to these technologies because it is a long-range, onboard 
system that performs well under a variety of lighting (it is immune) and atmospheric 
conditions, and it is rapidly becoming more affordable than LiDAR. Due to its long 
wavelength (which allows it to penetrate certain materials) and beam spread, radar can 
return multiple readings from the same transmission and generate a rich representation of 
the world. 
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Figure 1: Vision-based techniques are susceptible to drastic appearance and illumination variation, caused by 
inclement weather conditions or seasonal changes -- heavy precipitation in this example. 

  

Figure 2: The main limitation of LiDAR sensors for outdoor environments is that their measurements are 
affected by adverse environmental conditions, such as rain and fog. In this example, taken from [11], LiDAR 
range decreases when rain rate increases from 0 mmph (left), 9 mmph (middle), and 17 mmph (right). 

Adapting to change 

Despite their susceptibility to change, vision and LiDAR are, however, still affordable and 
information rich technologies and for this reason feature heavily in academic and 
commercial autonomous vehicle research and development. Therefore, processing 
strategies which can understand, represent, and effect change on the sensor stream can be 
powerfully applied to “normalise” sensor data for better autonomous performance. 

  

Figure 3: Instead of mapping from a difficult condition (night) to a presumed ideal condition (e.g. sunny), we 
learn to map from any adverse appearance to a shared, common appearance that while not seeming natural 
actually works better for a segmentation task. 

In our work we therefore develop methods which exploit the predictable effects of weather 
to “hallucinate” clear-condition images from a troublesome condition (e.g. blizzard, 
sandstorm). To avoid human bias in hand-selecting a clean seasonal appearance and to 
curtail the explosion in the required number of pairwise mappings, a composite canonical 
appearance which maximises effective robot behaviour can be learned, as we have showed 
in [1] and illustrated in Fig. 3. 

Learning from change 

Changes, being inevitable, should be maximally exploited as a rich source of information for 
learned systems. Therefore, these learned systems should be structured such that they are 
able to incorporate signals arising from change. 

An example from our work taken from [2] and illustrated in Fig. 4 is the boost to localisation 
performance observed when using real radar examples sampled along a vehicle’s trajectory 
rather than synthesising pairs. Radar is highly “stochastic”, in that the complexity of the 
measurement process introduces fast modes of change in scans, even if the vehicle is 
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stationary. We leverage these in order to naturally regularise the adaption of neural 
network weights while learning radar scan representations. 

 

Figure 4: Radar scans registered to one another by vehicle motion which in the absence of noises should exactly 
overlap and not differ in content. However, the radar scan formation process is subject to unpredictable 
changes due to many sensing artefacts. We exploit this for bonafide “true positive” examples which 
nevertheless have distinct scan content, for better neural network optimisation. 

Identifying change 

We assert that even if change cannot be handled satisfactorily, it is still hugely beneficial for 
the system to understand that change has occurred. It is furthermore important for the 
interpretability of autonomous driving tasks that the change can be localised within the 
sensor observation. 

In this area, our work on image segmentation in [3] and illustrated in Fig. 5 has resulted in a 
selective segmentation system which can identify which portions of images do not belong to 
the set of known classes that the system was trained to identify. To achieve this, we use a 
self-supervised procedure which incorporates “out-of-distribution” patches from the vast 
store of unlabelled imagery available online. The system is self-supervised in the sense that 
we do not know the class of the out-of-distribution patches, but we do know in a binary 
sense that those pixels are unknown. This allows the neural network which performs image 
segmentation to identify image regions when deployed live as not being sufficiently 
represented (“known”) in the training corpus - indicating a “distributional change”, which 
should be interpreted as a change in the operating conditions as compared to design and 
implementation of the system.  
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Figure 5: Top left: In-distribution images from typical autonomous driving scenes. Top right: Out-of-distribution 
images. Middle: Out-of-distribution patches inserted into in-distribution scenes. Bottom: In-distribution patches 
inserted into out-of-distribution scenes. 

Representing change in training datasets 

It is crucial that publicly available datasets for autonomous driving feature change. This is 
true when developing learned systems as well as for more classical autonomy stacks. These 
changes should capture typical changes as well as more unusual deviations in scene 
appearance. 

In our work, we have found in [4] that the it is best to collect datasets for localisation and 
motion estimation with radar over many repeat visits over the trajectory of interest, due to 
the stochastic nature of the radar measurement process (see above).  

This has informed our trial planning for our upcoming dataset [5], where additionally as 
shown in Fig. 5 we have collected data across seasonal changes which are not exactly 
repeatable (in England) but which must be handled robustly if encountered. 
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Figure 5: Datasets featuring typical and unusual change are crucial for the future success of autonomous 
vehicles which can handle change during operation. Featured top is an example of typical scene change (day to 
night). Featured bottom is an example of scene change (clear to snow) with a different periodicity (seasonal as 
opposed to diurnal) which also may be less common (at least in certain parts of the world). 

To embrace or to reject change? 

When actively addressed, change in the environment as scanned by sensors may be 
embraced (e.g. as for training learned systems, see above) or rejected for more robust 
system performance (e.g. as for selective segmentation, see above). 

More examples of change rejection in our work include [6] where dynamic obstacles 
occluding road boundaries are rejected from the semantic understanding of the road layout 
(changed from a pre-recorded semantic kerb map, for instance) for better lateral 
localisation in lane-keeping scenario, and [7] where perturbations in radar scans which are 
used for motion estimation are identified and smoothed, [8] where instead a learned neural 
network attention mask is used in a similar same task, and [10] where defects in 3D scans 
are corrected occurring to their change as measured against a higher quality sensor (used 
only for training). 

In terms of embracing change, our work in [9] is an important bridge towards implementing 
in the radar domain the “experience-based navigation” methodology of [12]. Here, a simple 
but elegant algorithm requires new memories to be recorded only when already-stored 
memories are insufficient to explain the current sensor observation. While as we have laid 
out above radar is less susceptible to appearance change, our work in [9] will allow us to 
correct for the small amount of drift that may occur due to unavoidable changes such as 
structural variation as cities change over extended time-scales. 

Summary 

Change for autonomous vehicle operation is unavoidable, predictable to an extent but often 
unpredictable, a rich source of training information, crucial to be properly represented in 
training data, often correctable during operation or if not at least detectable. Dealing with 
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change can be tackled at the system conception phase (design, coding, training, etc) and in 
the field. Algorithms and hardware are equally important. This area is one of the core 
challenges to universal autonomy.  
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